
Raymond Kroeker

https://raykroeker.net/

raymond@raykroeker.net

+1-604-308-0700

About

I’m a software engineer in Vancouver, BC. I have deep experience building distributed systems,

data stores, and closed-loop infrastructure control platforms. I’m familiar with multiple

languages, protocols and skilled in agile development methodologies and project ownership. My

focus is building reliable, scalable platforms and services.

Experience

Salesforce: December 2018-Present

Software Engineer Architect Infrastructure

• Led the definition and refinement of an architecture and roadmap for the control plane

platform managing the bare-metal lifecycle for all of Salesforce.

• Led the implementation of OS patching for hundreds of thousands of physical servers

intersecting hundreds of roles across multiple data centers.

o Led dozens of developer (service owner) teams to provide health signaling for

their services.

o Define standards for OS integration and service maturity within Salesforce.

o Improve security compliance from <60% to >90%.

o Improve time-to-delivery from 3 months to < 7 days.

• Design, implement and operate distributed key/value store.

o Increase the breadth of consensus for writes across the cluster.

• Led multiple teams to design and implement autonomous software release.

• Led the design and implementation of a framework and platform for scalable, reliable

lambda execution.

• Mentor senior engineers and lead cross-team architecture and design discussions.

eBay: September 2017-November 2018

Software Engineer Architect, Structured Data

• Design and implement a distributed, scalable knowledge graph data store.

• Implement a query-language and parser for SPAQL-like queries.

• https://github.com/eBay/beam.git

• https://innovation.ebayinc.com/tech/engineering/akutan-a-distributed-knowledge-graph-

store/

Salesforce: December 2012-September 2017

Software Engineer Principal Member of Technical Staff

• Design, implement and operate provisioning API for bare metal servers and switches

operating hundreds of thousands of devices.

o Reduce time-to-delivery for data center OS build from 2 months to < 12 hours.

o Improve reliability of delivery from ~70% to 90%.

• Design, implement and operate a closed-loop control system for bare metal

infrastructure.

• Design and implement a RESTful API for signal ingress and consuming/completing work

for infrastructure change.

• Design and implement a work scheduler for an infrastructure control plane.

Ping Identity: March 2009-October 2012

Lead Software Engineer

• Led the design and implementation of various microservices within PingOne’s initial

Software-as-a-Service offering.

• Design and implement the data model and access layer for PingOne.

• Led the design and implementation of an internal testing platform and framework for the

PingFederate product, serving the development team.

thinkParity Solutions: September 2005-December 2008

Software Engineer Founder / Architect

• Design, implement and operate a SaaS document management system.

• Implement a service to synchronize and manage documents w/in S3.

• Implement a desktop client to browse, share and synchronize documents.

Gemcom Software: January 2004-September 2005

Senior Software Engineer

• Build a data warehouse enabling customers to optimize their extraction logistics.

• Develop CI pipeline automation for ProdTrak, GEMS and Whittle in Java/C/C++/Visual

Basic/Fortran.

Correlation Technologies: April 2000-December 2003

Software Developer

• Implement project management software as a service for the insurance claims vertical.

• Implement a pub/sub message and notification service.

• Implement project management software as a service for a restoration vertical.

Education

CDI College of Business and Technology

Technology Diploma: Programmer Analyst

Skills

Languages (Go, Ruby, Java, C/C++), databases (Oracle, PostgreSQL, MySQL), key / value

stores and database internals (Bolt, RocksDB), distributed systems, consensus algorithms

(Raft, Paxos), authentication (SAML, OAuth), API and protocol design and implementation

(REST, gRPC, HTTP), bare-metal and public-cloud infrastructure (AWS), software development

methodologies (agile), micro-services, software-as-a-service, service and project ownership.

